6 research outputs found

    Multi-UAV trajectory planning for 3D visual inspection of complex structures

    Full text link
    This paper presents a new trajectory planning algorithm for 3D autonomous UAV volume coverage and visual inspection. The algorithm is an extension of a state-of-the-art Heat Equation Driven Area Coverage (HEDAC) multi-agent area coverage algorithm for 3D domains. With a given target exploration density field, the algorithm designs a potential field and directs UAVs to the regions of higher potential, i.e., higher values of remaining density. Collisions between the agents and agents with domain boundaries are prevented by implementing the distance field and correcting the agent's directional vector when the distance threshold is reached. A unit cube test case is considered to evaluate this trajectory planning strategy for volume coverage. For visual inspection applications, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure surface is designed. The gradient of this field is calculated to obtain the camera orientation throughout the trajectory. Three different test cases of varying complexities are considered to validate the proposed method for visual inspection. The simplest scenario is a synthetic portal-like structure inspected using three UAVs. The other two inspection scenarios are based on realistic structures where UAVs are commonly utilized: a wind turbine and a bridge. When deployed to a wind turbine inspection, two simulated UAVs traversing smooth spiral trajectories have successfully explored the entire turbine structure while cameras are directed to the curved surfaces of the turbine's blades. In the bridge test case an efficacious visual inspection of a complex structure is demonstrated by employing a single UAV and five UAVs. The proposed methodology is successful, flexible and applicable in real-world UAV inspection tasks.Comment: 14 page

    Design and construction of dual-arm manipulator for an UAV

    No full text
    Ljudi su od davnina pokušavali olakšati poslove koje su morali obavljati. Od 20. stoljeća robotski manipulatori obavljaju zadatke fizički prezahtjevne za čovjeka. Industrijski roboti doveli su nas do pametnih robota treće generacije koji imaju sposobnost učenja iz svojih pogrešaka. Time je inspiriran krajnji proizvod ovoga rada, dvostruki manipulator, koji u suradnji s bespilotnom letjelicom može odvrnuti vijak. Kako bi to bilo moguće bilo je potrebno razriješiti jednadžbe direktne i inverzne kinematike te ih implementirati u Robotskom Operacijskom Sustavu (ROS).Since ancient times people were trying to make their jobs easier. In 20th century robotic manipulators started to perform tasks which human beings were unable to do. So called industrial robots were the big step forward to 3rd generation of robots which are intelligent and can learn from their mistakes. Inspired by that the product of this thesis is dual-arm manipulator which can remove the screw in collaboration with unmanned aerial vehicle (UAV). To make that happen it was necessary to solve forward and inverse kinematics problem for given manipulator and implement it in Robot Operating System (ROS)

    Development of an adaptive controller for a lunar rover

    No full text
    Ljudska znatiželja ne poznaje granice. Nakon prvih ljudi u Svemiru sve je veća ambicija ze slanjem robota. Svemir nam je i dalje velika enigma i želimo na što sigurniji način istražiti sve njegove pojave. Tehnologija je napredovala do razine gdje mobilni roboti djeluju autonomno i obavljaju zadatke bez ljudske pomoći. Cilj ovoga rada je projektirati i primijeniti algoritam adaptivnog upravljanja na Mjesečevo vozilo LUVMI-X. U tu svrhu izrađen je matematički model vozila te dizajniran zakon upravljanja koristeći programski alat Simulink. Cilj regulatora je omogućiti praćenje puta, uzimajući u obzir klizanje kotača. Vozilo je modelirano u simulatoru Gazebo te je regulator implementiran i testiran.Human curiosity is limitless. After sending the first human to outer space we started deploying robots. There are still many unanswered questions about the space and we want to find out the answers in a safe way. Developments in technology reached the level where mobile robots are acting autonomously and solving tasks without human help. In this thesis, an adaptive control algorithm for a lunar rover LUVMI-X will be developed. The controller is developed in the graphical programming environment Simulink and it uses a simplified kinematic model of the vehicle. The goal is to achieve path tracking, taking into account the wheel slip. The vehicle model and controller are implemented and tested in the Gazebo simulator

    Design and construction of dual-arm manipulator for an UAV

    No full text
    Ljudi su od davnina pokušavali olakšati poslove koje su morali obavljati. Od 20. stoljeća robotski manipulatori obavljaju zadatke fizički prezahtjevne za čovjeka. Industrijski roboti doveli su nas do pametnih robota treće generacije koji imaju sposobnost učenja iz svojih pogrešaka. Time je inspiriran krajnji proizvod ovoga rada, dvostruki manipulator, koji u suradnji s bespilotnom letjelicom može odvrnuti vijak. Kako bi to bilo moguće bilo je potrebno razriješiti jednadžbe direktne i inverzne kinematike te ih implementirati u Robotskom Operacijskom Sustavu (ROS).Since ancient times people were trying to make their jobs easier. In 20th century robotic manipulators started to perform tasks which human beings were unable to do. So called industrial robots were the big step forward to 3rd generation of robots which are intelligent and can learn from their mistakes. Inspired by that the product of this thesis is dual-arm manipulator which can remove the screw in collaboration with unmanned aerial vehicle (UAV). To make that happen it was necessary to solve forward and inverse kinematics problem for given manipulator and implement it in Robot Operating System (ROS)

    Development of an adaptive controller for a lunar rover

    No full text
    Ljudska znatiželja ne poznaje granice. Nakon prvih ljudi u Svemiru sve je veća ambicija ze slanjem robota. Svemir nam je i dalje velika enigma i želimo na što sigurniji način istražiti sve njegove pojave. Tehnologija je napredovala do razine gdje mobilni roboti djeluju autonomno i obavljaju zadatke bez ljudske pomoći. Cilj ovoga rada je projektirati i primijeniti algoritam adaptivnog upravljanja na Mjesečevo vozilo LUVMI-X. U tu svrhu izrađen je matematički model vozila te dizajniran zakon upravljanja koristeći programski alat Simulink. Cilj regulatora je omogućiti praćenje puta, uzimajući u obzir klizanje kotača. Vozilo je modelirano u simulatoru Gazebo te je regulator implementiran i testiran.Human curiosity is limitless. After sending the first human to outer space we started deploying robots. There are still many unanswered questions about the space and we want to find out the answers in a safe way. Developments in technology reached the level where mobile robots are acting autonomously and solving tasks without human help. In this thesis, an adaptive control algorithm for a lunar rover LUVMI-X will be developed. The controller is developed in the graphical programming environment Simulink and it uses a simplified kinematic model of the vehicle. The goal is to achieve path tracking, taking into account the wheel slip. The vehicle model and controller are implemented and tested in the Gazebo simulator

    Development of an adaptive controller for a lunar rover

    No full text
    Ljudska znatiželja ne poznaje granice. Nakon prvih ljudi u Svemiru sve je veća ambicija ze slanjem robota. Svemir nam je i dalje velika enigma i želimo na što sigurniji način istražiti sve njegove pojave. Tehnologija je napredovala do razine gdje mobilni roboti djeluju autonomno i obavljaju zadatke bez ljudske pomoći. Cilj ovoga rada je projektirati i primijeniti algoritam adaptivnog upravljanja na Mjesečevo vozilo LUVMI-X. U tu svrhu izrađen je matematički model vozila te dizajniran zakon upravljanja koristeći programski alat Simulink. Cilj regulatora je omogućiti praćenje puta, uzimajući u obzir klizanje kotača. Vozilo je modelirano u simulatoru Gazebo te je regulator implementiran i testiran.Human curiosity is limitless. After sending the first human to outer space we started deploying robots. There are still many unanswered questions about the space and we want to find out the answers in a safe way. Developments in technology reached the level where mobile robots are acting autonomously and solving tasks without human help. In this thesis, an adaptive control algorithm for a lunar rover LUVMI-X will be developed. The controller is developed in the graphical programming environment Simulink and it uses a simplified kinematic model of the vehicle. The goal is to achieve path tracking, taking into account the wheel slip. The vehicle model and controller are implemented and tested in the Gazebo simulator
    corecore